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The use of chiral, catalytically derived zwitterionic “ketene”
enolates has brought forth powerful methodology for the synthesis
of a diverse variety of optically enriched products. Chiral ketene
enolate intermediates are well-known for undergoing highly enantio-
selective [2+ 2]-cycloadditions with both aldehydes and imines
to produceâ-lactones andâ-lactams, respectively.1 However, cases
in which ketene enolates engage in formal [4+ 2]-cycloaddition
reactions are almost unknown. The products of these [4+ 2]
reactions would be useful in their own right, while significantly
expanding the synthetic utility of ketene enolate reactions in general.
Accordingly, we report catalytic, enantioselective [4+ 2]-cycload-
ditions of o-quinones with chiral ketene enolates that are derived
from readily available acid chlorides and a cinchona alkaloid-based
catalyst. Additionally, the chiral cycloadducts can be derivatized
to provide a flexible synthesis ofR-oxygenated carboxylic acid
derivatives (Scheme 1).2

The reasons for the absence of the [4+ 2]-manifold in ketene
enolate-based reactions may be due to a number of factors, including
a kinetic preference for the creation of four-membered rings and
the relative unreactivity of the enolates themselves toward various
heterodienes. A strategy to overcome these obstacles would be to
employ more energetic substrates such aso-quinones to achieve
the desired higher-order asymmetric cycloadditions.3 The driving
force for these reactions would be, in large part, the restoration of
aromaticity to the products.

The chemistry ofo-quinones has been extensively outlined.4 In
some caseso-quinones are commercially available, such aso-
chloranil 1a,5 and 9,10-phenanthrenequinone1c (Chart 1). We
envisioned the standard transformation of an acid chloride into a
chiral ketene enolate (10 mol % of a cinchona alkaloid derivative,
stoichiometric base, toluene or THF solvent, low temperature) that
then reacts with theo-quinone to produce a chiral adduct. Follow-
up reactions with nucleophiles should occur smoothly (the products

would also be activated esters6), and CAN “deprotection” would
then unmask theR-hydroxylated product (Scheme 1).

Our initial screen employedo-quinones1a-1d (Chart 1) and
butyryl chloride (2a, R ) Et) as the reactants. Triethylamine (1.1
equiv.) served as both the dehydrohalogenating agent and the
catalyst. We initially employedo-chloranil 1a, but to our disap-
pointment, no desired product was obtained in THF or toluene even
at room temperature.7 However, when we employed our chiral
“shuttle base” system (10 mol % benzoylquinidine (“BQd”,3), 1.0
equiv Proton Sponge in toluene at-78 °C), surprisingly, after 4 h
reaction time, we isolated the desired product in 40% yield and
93% enantiomeric excess (ee) (eq 1). The very dark color of the

reaction was a cause for concernsprecedent suggests that a charge-
transfer complex betweeno-chloranil and Proton Sponge may be
reducing the yield.8 By replacing Proton Sponge with Hu¨nig’s base
in THF at-78 °C, the yield and the ee rose significantly (to 91%
and 99% respectively,4a, Table 1).

Thenceforth, we employed these conditions with all substrates.
We also screenedo-bromanil (1b), which was found to form product
in high ee (95%), and 90% yield (4g, Chart 2).9 9,10-Phenanthrene-
quinone (1c) was screened using similar conditions; its reactivity
proved to be much lower than that ofo-chloranil. However, when
the reaction temperature was raised to 0°C, reaction occurred
sluggishly to afford product. On the other hand, 4,5-dimethoxy-o-
quinone 1d failed to provide appreciable product under any
conditions.

Given the superiority ofo-chloranil (1a) in our screen, we
decided to investigate its reaction with a variety of acid chlorides.
For example, the aliphatic 3-methylbutyryl chloride (2b, Table 1)

Scheme 1. Synthesis of Cycloadducts and Carboxylic Acid
Derivatives

Chart 1. o-Quinones Screened
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afforded product4b in 75% yield and 93% ee (entry 2). An aromatic
substrate, phenylacetyl chloride (2c), afforded product4c in 90%
ee and also in excellent yield (90%, entry 3). Dihydrocinnamoyl
chloride (2d) performed similarly, affording product4d in high ee
(99%). Additionally, otherR-arylacetyl chlorides proved to be excel-
lent substrates. For example, (p-methoxyphenyl)acetyl chloride (2e)
generated product in very high (99%) ee (entry 5). Using BQd as
catalyst, the (R)-enantiomers were formed preferentially.10 The (S)-
enantiomers are made using benzoylquinine (BQ) as catalyst instead.

Theo-chloranil-derived cycloadducts can be derivatized to chiral,
R-oxygenated carboxylic acid derivatives. For example, methano-
lysis of4c followed by CAN oxidation affords (+)-methylmandelate
8c in excellent (95%) yield (90% ee). This result confirmed the
sense of induction in our products, which is consistent with the
stereochemical model we devised for relatedâ-lactam and halo-

genation reactions.5a Several other cycloadducts (4a-4d) were
likewise converted to optically activeR-hydroxyesters (Chart 3).

In each case, the alcoholysis/oxidation sequence proceeds in high
yield, under mild conditions, and with full preservation of optical
activity, comparing favorably with other methods for the synthesis
of chiral R-hydroxyesters.

In future work, we intend to expand the scope of theo-quinone
[4 + 2] reaction and investigate othero-quinone derivatives as well.
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Table 1. Synthesis of o-Chloranil-Derived Cycloadducts

a Reactions run with 10 mol % catalyst, 0.55 mmol Hunig’s base, 0.55
mmol acid halide, and 0.55 mmol1a at -78 °C with slow addition of the
acid halide over 5 h employed forR-aryl acid halides (2c, e, f). Yields
given are for isolated products.

Chart 2. Various Chiral o-Quinone Adducts

Chart 3. Conversion of Cycloadducts to R-Hydroxyesters
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